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STUDY BACKGROUND
• Fluorescent imaging technologies now allow for multiplex 

immunofluorescence (mIF) of up to 100 targets on a single slide.  

However, the ability to quantitatively analyze the resulting data, especially 

on whole-slide images (WSI), is limited by scalability and reproducibility.  

• Currently used platforms for segmenting cancer cells and nuclei involve 

segmentation algorithms that are hand-tuned on individual fields of view, 

making these methods subjective and difficult to replicate.  

• To this end, we sought to develop an end-to-end workflow for WSI mIF 

data in cancer, from raw images to cell-level features (Fig. 1), using state-

of-the-art deep learning models for tissue, cell, and nuclei segmentation.
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METHODS AND RESULTS
mIF was performed using 

the Akoya 6-plex Lung IO 

panel (CD8, FoxP3, CD68, 

PD-1, PD-L1, and pan-

cytokeratin) with a DAPI 

counterstain on clinical 

NSCLC specimens obtained 

from   commercial   sources 

Figure 1. Workflow for mIF image segmentation and 

analysis.

Figure 2. Removal of autofluorescence and 

spectral cross-talk with unmixing.
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For each mIF image, a synthetic H&E image 

was generated by mapping the DAPI signal 

to a hematoxylin stain vector and a 

composite of all other channels to an eosin 

stain vector (Fig. 3). Convolutional neural 

network models previously trained on H&E 

images for artifact detection and tissue 

region identification were then deployed on 

s

CONCLUSIONS

To remove bleed-through  

between fluorophores and 

autofluorescence, mIF WSIs 

were linearly unmixed 

based on a reference 

single-stain matrix that was 

generated by selecting 

selecting

Figure 4. Performance of mIF-derived segmentation models and examples of downstream analytics.
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(N=41). This panel was chosen due to the mix 

of nuclear, cytoplasmic, and membranous 

target localizations and current widespread 

laboratory use.  Slides were scanned using the 

Akoya PhenoImager HT.

Unmixing

pure stain regions in mIF images (Fig. 2).
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• We developed a robust workflow to perform 

comprehensive image analysis on mIF WSIs at 

scale, including unmixing, tissue segmentation, 

and cell segmentation.  

• Features extracted from the models developed 

herein can be used to perform cell-level analytics 

across a WSI at scale.

• Approaches such as these can improve the 

scalability and reproducibility of complex mIF 

image analysis. Adoption of this approach and 

incorporation into clinical trial workflows in 

oncology may improve biomarker identification 

and endpoint analyses, potentially improving 

patient outcomes.

For each unmixed channel 

representing a single antibody or 

DAPI signal, expert annotations 

were used to train deep learning 

models for cell detection and 

segmentation.  Examples of input 

single-channel  images  and  model 

predictions are shown in Fig. 4A. 
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Figure 3. Use of synthetic H&E for tissue segmentation.
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Analyses were performed based on segmented object location and size. The 

tissue region distribution for cell nuclei and  PD1+, CD8+, CD68+, FOXP3+, 

and CK+ cells in an example WSI are shown in (Fig. 4B). The relative 

frequencies of segmented cell types at the whole-slide level shows distinct 

inter-tumoral heterogeneity in lymphocyte phenotypes (Fig. 4C), while  

tissue-region analysis confirms that PD1+ CD8+ cells are most likely to be 

tumor infiltrating (Fig. 4D).  Cell-type-specific nuclei areas were also 

calculated (Fig. 4E), confirming enlarged cancer (CK+) nuclei compared to 

other cell nuclei (p<0.0001 (Kruskal-Wallis test); Fig. 4E).other cell nuclei (p<0.0001; Kruskal-Wallis test).
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synthetic H&E images.
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p < 0.0001
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