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AI-powered analysis of nuclear morphology associated with prognosis in high-grade serous carcinoma

STUDY BACKGROUND

METHODS RESULTS 

• Analysis of nuclear morphology revealed that greater inter-
nuclear variation in staining intensity and minor axis length 
(Fig. 3d) were associated with reduced overall survival, 
reflecting the effect of variability in chromatin characteristics 
(corrected p=0.023, Hazard Ratio (HR) = 2.51) and inter-
nuclear heterogeneity in shape and size across a slide 
(corrected p=0.035, HR=2.11), respectively (Fig. 5).

Figure 7. 
Aneuploidy events 
were predictive of 
reduced overall 
survival.  
Kaplan-Meier 
analysis. 
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Figure 1. Schematic illustrating convolutional neural network (CNN) model 
development approach for pixel-level feature predictions. 

• ML model classification of ovarian cancer cell types and tissue regions 
is concordant with manual pathologist consensus.

• ML-based analysis further reveals a relationship between cancer cell 
nuclear morphological diversity (pleomorphism and chromatin 
variability), aneuploidy, and patient prognosis.

• The ovarian carcinoma model developed in this study could be applied 
in future studies to classify various molecular subtypes of HGSC.

• Moreover, follow up studies could also leverage digital pathology to 
investigate response to various targeted therapies such as 
immunotherapy and PARP inhibitors based on ML-quantified features
of the tumor microenvironment and nuclear morphology, potentially 
enabling strategies for matching of patients with appropriate targeted 
therapies and clinical trials.

• A separate nuclear segmentation was deployed on H&E WSI from 
93 subjects to characterize nuclear morphology at single-pixel 
resolution (Fig. 2).

Figure 6. Correlation of greater variability in nuclear minor axis length 
with increased aneuploidy events involving gains in chromosome arms. a) 
Stratified boxplot;  b) continuous correlation.  

CONCLUSIONS 

Ovarian carcinoma is a leading driver of cancer-related mortality in women, but predicting long-term survival at diagnosis 
remains a challenge1. The majority of advanced stage cases are of the aggressive high-grade serous carcinoma (HGSC) 
subtype2.

Features of both the tumor microenvironment as well as cancer cell nuclei have both been shown to affect clinical outcome 
in several cancer types, including ovarian cancer3-6. Here we demonstrate that AI-powered pathology can classify cells and 
tissue regions in the high-grade serous carcinoma (HGSC) tumor microenvironment, and reveal nuclear morphology 
associated with patient outcomes, directly from digitized hematoxylin and eosin (H&E)-stained whole slide images (WSI). 

• Machine learning (ML) models were trained using H&E WSI of 
ovarian carcinoma samples from both publicly available (e.g.
TCGA) and proprietary sources (Total N=352 slides from 257 
subjects). ML models were trained to label tissue regions (cancer 
epithelium, stroma, necrosis) and cell types (cancer epithelial 
cells, fibroblasts, and inflammatory cells) using 138,632 
pathologist-provided annotations (Fig. 1). 

Figure 4. Cell model performance evaluation. Model performance was assessed 
in a held-out test set (not used in model training) comprising 49 WSIs. 

• Five pathologists exhaustively annotated 240 frames of smaller 
tissue regions (300 x 300 pixels) to produce consensus ground 
truth cell labels. Model predictions (Fig. 3a-c) were compared 
with pathologist consensus in these frames using Pearson 
correlation. Individual pathologist predictions were also compared 
with pathologist consensus. 

• Model performance is particularly strong in quantification of 
cancer epithelial cells and lymphocytes; weaker performance in 
fibroblasts and macrophages reflects greater inter-pathologist 
variability in these cell class predictions (Fig. 4).  

ML-QUANTIFIED NUCLEAR FEATURES ASSOCIATED WITH ANEUPLOIDY AND OVERALL SURVIVAL

MODEL PERFORMANCE EVALUATION 

• Greater variation in nucleus minor axis length was also 
correlated with increased number of aneuploidy events 
involving gains in chromosome arms (Spearman correlation 
r=0.41, p<0.001) (Fig. 6). 

MODEL-GENERATED OVERLAYS 

Figure 2. Integration of cell, tissue, and nuclear model workflows.  The 
nuclear segmentation model segments all nuclei in H&E WSI; the cell model 
is then used to assign cell class to each identified nucleus. Human-
interpretable features (HIFs) extracted from cell and tissue heatmaps 
include cell counts and area proportions; nuclei HIFs include nuclear size, 
shape, and staining intensity.   

• Survival and clinically relevant statuses were regressed vs. 
nuclear features using univariate Cox or logistic regressions. 
False discovery rate correction was applied using the Benjamini-
Hochberg procedure.

Figure 5. Greater variability in nuclear minor axis length associated 
with  reduced overall survival. Kaplan-Meier analysis. 

• Aneuploidy events involving gains in chromosome arms were  in turn 
predictive of reduced overall survival (corrected p=0.042, HR=1.90) 
(Fig. 7).
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Figure 3. PathAI model-generated overlays. 
a) H&E-stained HGSC WSI. b) Tissue-level 
overlay showing model predictions for 
cancer stroma (orange), and cancer 
epithelium (red). c) Cell-level overlay 
showing model predictions for cancer 
epithelial cells (red), lymphocytes (green), 
fibroblasts (orange), and plasma cells (light 
green). d) Nuclear segmentation overlay
showing heterogeneity in nuclear size and 
shape. 
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