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Model Training and Deployment. Convolutional Neural Network models for
1) nucleus detection and segmentation and 2) cell classification (Figure 1)
were deployed on H&E-stained WSIs from The Cancer Genome Atlas
(TCGA) breast cancer dataset (primary surgical resections; N=890).
Separate models were trained to segment regions of stromal subtypes,
such as inflamed and fibroblastic stroma (Figure 2). Examples of model
output are shown in Figure 3.

CONCLUSIONS 
• Morphological features of cancer cell nuclei are routinely used to assess disease severity and
prognosis, and prior work has linked cancer nuclear morphology to genomic alterations1-3. In
addition, the cellular composition of cancer-associated stroma (CAS) has been linked to
prognosis in several cancer types, including breast cancer4.

• Quantitative analyses of 1) nuclear features of cancer cells and other tumor-resident cell types,
such as cancer-associated fibroblasts (CAFs), and 2) composition of CAS may reveal novel
biomarkers for prognosis and treatment response.

• Here, we applied a nucleus detection and segmentation algorithm, a cell classification model,
and a stromal subdivision model to hematoxylin and eosin (H&E)-stained whole slide images
(WSIs) of breast cancer specimens, enabling the assessment of features related to nuclear
morphology and stromal composition.

• Variation in cancer cell nuclear
area, a quantitative metric related
to pathologist-assessed nuclear
pleomorphism, was calculated by
the standard deviation of the
nuclear area of cancer cells
across a WSI.

• Standard deviation of nuclear
area was associated with two
metrics of genomic instability, A)
aneuploidy score (r=0.448) and
B) homologous recombination
deficiency (HRD) score (r=0.382).

• In contrast, the variability in CAF
and lymphocyte nuclear areas did
not correlate with either metric of
genomic instability (all r<0.1,
p>0.05).

Figure 4. Genomic instability is associated with variability in nuclear area.

Figure 5. Nuclear morphology is related to gene expression.

• Nuclear HIFs were compared to RNAseq-derived gene expression signatures for A)
cancer cells and B) CAFs.

• Gene set enrichment analysis revealed associations between A) variation in cancer
cell nuclear area and the expression of cell cycle and proliferation pathway genes
and B) CAF nuclear size and the expression of gene sets involved in extracellular
matrix remodeling and degradation. Genes of interest representing cell
cycle/proliferation (CCNE1, MYBL2) and collagen regulation (RCN37) are
highlighted; the top five significant pathways are shown.

Figure 6. Nuclear morphology associates with overall survival in breast cancer.

• Overall survival in breast cancer based on nuclear features was assessed by multivariable Cox
regression with age and ordinal tumor stage as covariates.

• Stratifying breast cancer by low vs. high cancer cell nuclear area variability reveals that patients
with low variability have improved OS compared to patients with high variability (p=0.05; A).

• Stratifying breast cancer by low vs. high CAF nuclear area reveals that patients with smaller CAF
nuclei have improved OS compared to patients with larger CAF nuclei (p=0.002; B).

Figure 7. Molecular subtypes of breast cancer show unique stromal compositions.

• The relative area proportions of densely inflamed stroma, mature stroma, fibroblastic stroma,
immature stroma, and elastosis were assessed in the four molecular subtypes of breast cancer, as
well as non-cancerous tissue (NC) (A).

• Patients with basal-like breast cancer show larger areas of densely inflamed stroma, compared to
patients with other subtypes of breast cancer (B).

• Patients with basal-like breast cancer also show higher number (C) and density (D) of plasma cells
in densely inflamed stroma, compared to patients with other breast cancer subtypes.

• Significance was calculated by Mann-Whitney U test: ***: p<1e-10, **: p<1e-5, *: p<0.05

Figure 8. Macrophage-related features associate with OS in HER2+ 
breast cancer.

1PathAI, Boston, MA. 

• The nuclear morphologies of breast cancer cells and CAFs reflect underlying
genomic and transcriptomic properties of the tumor and associate with patient
outcome.

• The histological appearance of the stroma differs between molecular subtypes of
breast cancer, and features associated with macrophages were associated with
outcome in patients with HER2+ disease.

• The application of digital pathology analysis of breast cancer histopathology slides
enables the integrative study of genomics, transcriptomics, tumor morphology, and
overall survival to support research into disease biology research and biomarker
discovery.

Figure 3. Examples of
model performance in
breast cancer. A) H&E,
B) nuclear segmentation
and cell identification,
and C) stromal subtype
identification. Densely inflamed stroma Mature stroma

Fibroblastic stroma

Cancer cell Lymphocyte Macrophage

Fibroblast Plasma cell Other cell
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Figure 1. Machine learning model training and deployment for nuclear 
segmentation and cell classification.

Exploratory analyses. Nuclear features (area, axis length, eccentricity,
color, and texture) were computed and aggregated across each slide to
summarize slide-level nuclear morphology for each cell type5. Next-
generation sequencing-based metrics of genomic instability (N=774) and
gene expression (N=868) were acquired for each case. Gene set
enrichment analysis was performed using the Molecular Signatures
Database6. Spearman correlation was used to relate nuclear features to
genomic instability metrics, and linear regression was used to assess the
relationship between nuclear features and bulk gene expression. Stromal
features showing differences across breast cancer subtypes were
identified by Kruskal-Wallis analysis, followed by Mann-Whitney U test
between pairs of breast cancer subtypes. Multivariable Cox regression
with age and ordinal tumor stage as covariates was used to find
association between overall survival (OS) and nuclear features and
stromal features. All reported results were adjusted for false discovery rate
via the Benjamini-Hochberg procedure.

RESULTS

Figure 2. Stromal subtypes identified by stromal subdivision model.
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Densely Fibroblastic 
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All images are of H&E-stained specimens that were captured at 30X
magnification with the same pixel dimensions (484 x 484 pixels).

• Examination of stromal features revealed an association between macrophages
and OS, specifically in HER2+ breast cancer (A). Further exploration revealed
that this phenomenon was driven by macrophages in mature stroma (B).

• In HER2+ breast cancer, elevated count proportion (C) and density of
macrophages in mature stroma (D) corresponded to improved OS (p=0.016 and
0.016, respectively).

Reactome Gene Set Name p-value FDR q-value

Cell Cycle 1.13 x 10-32 2.15 x 10-29

Cell Cycle, Mitotic 3.13 x 10-31 2.98 x 10-28

FCGR Activation 1.1 x 10-28 6.99 x 10-26

Creation of C4 and C2 Activators 2.38 x 10-28 1.13 x 10-25

Initial Triggering of Complement 5.62 x 10-27 2.14 x 10-24

Reactome Gene Set Name p-value FDR q-value

Collagen Formation 6.32 x 10-18 1.2 x 10-14

Collagen Biosynthesis and Modifying 
Enzymes

1.4 x 10-17 1.34 x 10-14

Extracellular Matrix Organization 3.03 x 10-14 1.93 x 10-11

Assembly of Collagen Fibrils and other 
Multimeric Structures

1.81 x 10-10 8.62 x 10-8

Degradation of the Extracellular Matrix 6.34 x 10-8 2.42 x 10-5

A

0 10 20 30 40

Fibroblasts
r = 0.02, p = 0.585, n = 774

HR
D 

sc
or

e

0

20

40

60

80

100

Std. dev. nuclear area
0 10 20 30 40

Lymphocytes
r = 0.021, p = 0.555, n = 774

HR
D 

sc
or

e

0

20

40

60

80

100

HR
D 

sc
or

e
0

20

40

60

80

100

0 10 20 30 40

Cancer cells
r =0.382, p < 0.001, n = 774

0 10 20 30 40

Fibroblasts
r = 0.061, p = 0.09, n = 774

0

10

20

30

40

An
eu

pl
oi

dy
 s

co
re

Std. dev. nuclear area
0 10 20 30 40

Lymphocytes
r = 0.013, p = 0.714, n = 774

0

10

20

30

40

An
eu

pl
oi

dy
 s

co
re

An
eu

pl
oi

dy
 s

co
re

0

10

20

30

40

0 10 20 30 40

Cancer cells
r = 0.448, p < 0.001, n = 774

B

-0.3 -0.2 -0.1 0.0 0.1 0.2
Effect size

log2 fold-change in expression per unit change in feature z-score

0

10

20

30

40

-lo
g 

(a
dj

us
te

d 
p)

CCNE1
MYBL2

Standard deviation of cancer cell nucleus area

-1.0 -0.5 0.0 0.5 1.0
Effect size

log2 fold-change in expression per unit change in feature z-score

0

1

2

3

4

5

6
RCN3

Mean CAF nucleus minor axis length

-lo
g 

(a
dj

us
te

d 
p)

0 50 100 150 200 250 300
Time (months)

0.0

0.2

0.4

0.6

0.8

1.0
Low length
High length

152435 54 7 3 0 0
112434 29 9 6 4 0

Mean CAF nucleus minor axis length

0 50 100 150 200 250 300
Time (months)

Standard deviation of cancer cell nucleus area

0.0

0.2

0.4

0.6

0.8

1.0

O
S

Low variability
High variability

At risk 145434 49 10 4 1 0
435 119 34 6 5 3 0

Low
High

Time (months)

Density of macrophages over all cells in mature stroma

0 50 100 150 200

36 7 4 1 1

2 20 23 25 25

0 11 11 12 12

37 15 1 0 0

1 22 35 36 36

0 1 2 2 2

1.00

0.75

0.50

0.25

0.00

Count proportion of macrophages over all cells in mature stroma

Time (months)
0 50 100 150 200

36 9 3 1 1

2 18 24 25 25

0 11 11 12 12

37 13 2 0 0

1 24 34 36 36

0 1 2 2 2

1.00

0.75

0.50

0.25

0.00

O
S

At risk

Censored

Events

Mature
stroma

Immature
stroma

Elastosis

Densely
inflamed

stroma

Fibroblastic
stroma

Macrophage cells (HER2)

-log10 (FDR adjusted p-value)
0.0 0.5 1.0 1.5

Foamy
macrophage

cells

Macrophage
cells

Fibroblast
cells

Plasma
cells

Lymphocyte
cells

Cancer
cells

Luminal A

0.0 1.0 0.0
-log10 (FDR adjusted p-value)

1.0 0.0 1.0 0.0 1.0

Luminal B Basal

0.0 1.00.5 1.5 0.5 1.5 0.5 1.5 0.5 1.50.5 1.5

Normal HER2

A B

A B

A

B C D

BA

C D

0

1000

2000

3000

4000

*
***

***

De
ns

ity
 o

f p
la

sm
a 

ce
lls

 in
de

ns
el

y 
in

fla
m

ed
 s

tro
m

a

0.0

0.1

0.2

0.3

0.4

0.5

*
***

***

Co
un

t p
ro

po
rti

on
 o

f p
la

sm
a 

ce
lls

 o
ve

r
al

l c
el

ls
 in

 d
en

se
ly

 in
fla

m
ed

 s
tro

m
a

0.0

0.2

0.4

0.6

0.8

1.0 **
***

*
*

Ar
ea

 p
ro

po
rti

on
 o

f d
en

se
ly

 in
fla

m
ed

st
ro

m
a 

ov
er

 to
ta

l s
tro

m
a

Luminal A Luminal B Basal HER2 Normal

Ar
ea

 p
ro

po
rti

on
 in

 to
ta

l s
tro

m
a

Densely inflamed stroma Mature stroma Fibroblastic stroma Immature stroma Elastosis

1.0

0.8

0.6

0.4

0.2

0.0
200 400 600 800

NCHER2BasalLuminal BLuminal A


