Digital Pathology Uncovers Multi-Omic Hallmarks of Lung Cancer in Histopathology Images Abstract
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STEP 3:
Train classical ML models to find
relationships with molecular information
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whole-exome sequencing and bulk RNA-seqg (6), from :
which SNV smoking sighature and tumor mutation burden
(TMB) were calculated using deconstructSigs (7) and

direct mutation counts, respectively. Figure 4. Associations between HOC-related gene expression signatures and tissue- and nuclei-based features in NSCLC. Significant associations (corrected p<0.05) were observed between sequencing-derived REFERENCES

signatures of HOC (y-axis) and A) TME HIFs derived from cells and tissues and B) features derived from cancer cell and fibroblast nuclei. Homologous recombination defects were associated with increased necrosis
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Spearman correlation was performed, and p-values were o L o F= 031
adjusted using Bonferroni correction. Pairwise associations e ‘ '
between HOCs and HIFs were confirmed using linear
regression analysis. To identify associations between HIFs
and continuous smoking signature and TMB, univariate # . . o N N
linear regression was performed. The associations - 5 p ' 10 | | High High
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between the dichotomized smoking signature and tumor R = 0.45

mutation burden (TMB) with overall survival (OS) were 0T e Figure 6. Clinically relevant distinctions between smoking signature and tumor mutation burden (TMB) in NSCLC. A) < P thAl
characterized using univariate Cox proportional hazards Necrosis tissue area relative to tumor area Density of fibroblasts in the stroma Dichotomized SNV smoking signature was associated with OS (HR=0.59, p=8.2x103), but dichotomized TMB was not “ a

analvsis Figure 5. Pairwise associations between HOC-associated gene (HR=0.88, p=0.48). B) TMB was associated with increased presence of macrophages in the stroma, (p=0.039). C) SNV
ysIS. sighatures and TME HIFs. smoking signature was associated with increased overall lymphocyte density (p=2.9x10-%).
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