
•	 To assess the tumor microenvironment in advanced or metastatic UC, we developed ML–based 
models to identify cell types and tissue regions in digitized H&E–stained WSI from the JAVELIN Bladder 
100 trial. ML–quantified features were used for subsequent slide–level immune phenotyping of these 
clinical trial samples

•	 Models previously trained using samples from The Cancer Genome Atlas were refined using extensive 
tissue regions and cell type annotations on 703 formalin-fixed, paraffin–embedded, H&E–stained WSI 
scanned on MIRAX (40×) to identify artifacts, tissue regions (cancer, stroma, and necrosis), and cell 
types (cancer epithelial cells, lymphocytes, macrophages, fibroblasts, and granulocytes) (Figure 1). 
Precision, recall, and F1 scores were calculated to evaluate model performance

•	 In accordance with pathologist guidelines at Merck KGaA, Darmstadt, Germany, H&E slide–level digital 
immune phenotypes (excluded, inflamed, and desert) were determined using ML–derived features

•	 The distribution of H&E slide–level digital immune phenotypes was calculated across available samples 
in both trial arms, and the association between immune phenotype and CD8 score at the tumor core 
was determined using the Kruskal-Wallis and Mann-Whitney U tests
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SCOPE
•	We report an artificial intelligence (AI)–powered 

approach to determine slide–level immune 
phenotypes directly from digitized hematoxylin and 
eosin (H&E)–stained whole slide images (WSI) of 
clinical advanced or metastatic urothelial carcinoma 
(UC) samples, with potential use as an alternative to 
CD8 immunohistochemistry (IHC)–based approaches 
to identify patients with hot and cold tumors

CONCLUSIONS
•	An association between inflamed immune phenotypes 

and higher CD8 scores at the tumor core supports the 
potential use of this AI method as an alternative to 
CD8 IHC-based approaches to identify patients with 
hot and cold tumors in advanced or metastatic UC

Artificial intelligence–powered 
immune phenotyping of advanced 
or metastatic urothelial carcinoma 
clinical trial samples from 
hematoxylin and eosin–stained 
whole slide images

•	 First-line (1L) maintenance with avelumab, an  
anti–PD-L1 antibody, combined with best supportive 
care (BSC) significantly prolonged overall survival vs 
BSC alone in the JAVELIN Bladder 100 clinical trial 
enrolling patients with advanced or metastatic UC 
that had not progressed with 1L platinum-containing 
chemotherapy1,2

•	 Results from this trial led to the approval of avelumab 
1L maintenance in various countries worldwide, and 
the JAVELIN Bladder regimen is an established standard 
of care in international treatment guidelines based on 
level 1 evidence3-8

•	 PathAI machine learning (ML) models have 
previously been deployed to characterize the tumor 
microenvironment in a range of cancer types9

BACKGROUND METHODS

•	 Model performance evaluation in 
representative frames of tissue regions 
that were exhaustively annotated 
showed high correlation of model 
predictions and pathologist consensus 
(“model vs consensus”), comparable 
to agreement among 5 pathologists 
(“annotator vs consensus”) (Table 1)

•	 Precision, recall, and F1 scores for model 
predictions were comparable to those 
of an average annotator across cell 
types. The model’s concordance with 
consensus was higher than that of an 
average human annotator (Cohen κ, 
0.816 vs 0.680) (Figure 2A and 2B)

•	 Calculation of the distribution of H&E 
slide–level digital immune phenotypes 
across trial arms showed that most 
samples in each arm were classified by 
the model as excluded (approximately 
84% of all samples), followed by inflamed 
(approximately 15%). The model 
identified very few samples as desert 
(approximately 1%) (Figure 3)

•	 Association between immune phenotype 
and the gold standard CD8 IHC score at 
the tumor core showed that samples with 
the inflamed phenotype had higher CD8 
scores at the tumor core than samples 
with the excluded phenotype (Mann-
Whitney p<0.026) (Figure 4)

•	 Inflamed vs excluded slides show the 
difference in relative abundance of 
lymphocytes in tumor compartments 
(Figure 5)

Figure 1. Model Development

Schematic illustrating CNN model development approach for pixel-level feature predictions. 
CNN, convolutional neural network. 

RESULTS
Table 1. Frames-based analysis of model performance

Cell model class
Interpathologist Pearson 
estimate (95% CI)* 

PathAI algorithm Pearson 
estimate (95% CI)† 

Cancer cell 0.89 (0.84-0.93) 0.82 (0.77-0.87)

Lymphocyte 0.89 (0.86-0.92) 0.90 (0.87-0.93)

Fibroblast 0.71 (0.63-0.78) 0.74 (0.66-0.80)

Granulocyte 0.65 (0.53-0.74) 0.73 (0.66-0.79)

Macrophage 0.44 (0.34-0.52) 0.53 (0.42-0.63)
Model performance vs consensus was evaluated on frames of small tissue regions that were exhaustively 
annotated.  
*Annotator vs consensus. †Model vs consensus.

Figure 2. Model Performance
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1,237.0 8.0 72.0 45.0 55.0

4.0 190.0 3.0 10.0 1.0

33.0 14.0 644.0 15.0 97.0

39.0 70.0 107.0 1,813.0 63.0

9.0 7.0 35.0 22.0 649.0

Confusion matrices Model Aggregated annotator

Accurate predictions, % 0.8647 0.8220

Innaccurate predictions, % 0.1353 0.1780

Concordance with consensus Model Average annotator

Cohen κ 0.816 0.680

Kramer V 0.800 0.761
Average annotator matrix is computed by averaging per-class metrics for each annotator, for which each 
annotator has equal weight. Aggregated annotator confusion matrix is generated using all an2222notations, for 
which each annotation has equal weight.

Figure 3. Distribution of H&E slide–level immune 
phenotypes across trial arms 
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Figure 5. Machine learning model–generated tissue and 
cell overlays of WSI with inflamed vs excluded immune 
phenotypes 
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PathAI model–generated tissue- and cell-level overlays. (A) Overlays on WSI with inflamed phenotype. 
(B) Overlays on WSI with excluded phenotype.  
Tissue-level overlays show model predictions for regions of cancer epithelium (red) and cancer stroma 
(orange). Cell-level overlays show model predictions for lymphocytes (green). 

Figure 4. Association between digital immune phenotype 
and CD8 IHC score
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BSC, best supportive care; H&E, hematoxylin and eosin.


