
AI-powered segmentation and analysis of nuclear morphology predicts genomic and 
clinical biomarkers in multiple cancer types

STUDY BACKGROUND

RESULTS RESULTS 
Figure 4. nuHIFs predict features of several cancer subtypes.
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Samples. Over 29,000 manual nucleus annotations were collected
from H&E images from 21 tumor types at 40x and 20x magnification
from The Cancer Genome Atlas (TCGA). A proprietary set of H&E-
stained tissue biopsies of skin, liver non-alcoholic steatohepatitis, colon
inflammatory bowel disease, and kidney lupus was also used.

Machine Learning Model and Deployment. Annotations were used to
train an object detection and segmentation model for identifying
cellular nuclei. Application of the model to held-out test data, including
held-out tissue types, demonstrated performance comparable to
models described in the literature (mean Dice score=0.80, aggregated
Jaccard index=0.60). Our implementation enabled the application of
the model to whole-slide images rather than sampling regions of
interest from tissue samples, as is more commonly performed. We
deployed our model on primary diagnostic H&E slides from the breast
cancer (BRCA, N=892), prostate adenocarcinoma (PRAD, N=392), and
lung adenocarcinoma (LUAD, N=426) TCGA cohorts. We extracted
interpretable features describing the shape (circularity, eccentricity,
area, and major and minor axis dimensions), size, staining intensity
(mean and standard deviation), coloring, and texture of each nucleus.
Nuclei were assigned as cancer or other cell types using separately
trained convolutional neural networks. We used the mean and standard
deviation (SD) of each feature across all cancer nuclei to summarize
the cancer nuclear morphology on each slide, leading to the
identification of nuclear human-interpretable features (nuHIFs).

Predictive Analysis. We used nuclear features to construct
interpretable logistic regression classification models for predicting
whole genome doubling (WGD), homologous recombination deficiency
(HRD4), and markers of prognosis. For each dataset, a multivariate
logistic regression classification model was used with elastic net
regularization. A 67%/33% stratified train/test split was used.

Figure 3. Nuclear segmentation and cell type identification.

Distortion to the nuclear envelope, such as altered size, shape, and morphology, is a common feature of cancer reflective of the underlying hallmark 
genomic instability1,2. Nuclear morphology is a common visual aid to diagnostic and prognostic pathology. Nuclei can be well-established markers of 
specific cancers; for example, a clear nucleus (“Orphan Annie Eye”) is a known indication for papillary thyroid carcinoma3. Nuclear structure changes 
during mitosis, and distorted nuclei can indicate dysregulated replication processes, genetic mutations that affect stability and function of the nuclear 
envelope, aneuploidy, and genome instability1. Nuclear features have been found to correlate with prognosis in several cancer subtypes.

To enable the use of nuclear morphology in digital pathology, we developed a pan-tissue, deep-learning-based digital pathology pipeline for exhaustive 
nucleus detection, instance segmentation, and classification on whole-slide hematoxylin and eosin (H&E)-stained pathology images.

Plasma cell

Lymphocyte

Macrophage

Fibroblast

Cancer epithelial cell

Indeterminate

TC
G

A
 B

RC
A

TC
G

A
 P

RA
D

TC
G

A
 L

U
A

D
H&E Image Segmentation Overlay

Smooth muscle cell

Endothelial cell

Other cell

Fibroblast

Lymphocyte

Macrophage

Plasma cell

Cancer epithelial cell

Normal cell

Indeterminate

Cancer epithelial cell

Granulocyte

Plasma cell

Macrophage

Fibroblast

Lymphocyte

Indeterminate

Figure 2. Example of model 
performance. A) Representative 
whole slide image patch from a 
patient with mesothelioma stained 
with H&E. B) Ground truth nuclei 
identified manually. C) Nuclei 
predicted by model. Each color 
represents a nucleus instance.

We have developed a powerful pan-tissue approach for nucleus segmentation
and featurization on entire whole-slide images. This method enables the
construction of predictive models and the identification of features linking nuclear
morphology with clinically-relevant prognostic biomarkers, such as WGD and HRD
across multiple cancer types, including BRCA, PRAD, and LUAD. These results
highlight the potential of machine learning-guided nuclear morphometry as a
prognostic tool for cancer pathologists.
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Figure 1. Machine learning model training and deployment.
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Representative H&E images of breast cancer (TCGA BRCA), prostate
adenocarcinoma (TCGA PRAD), and lung adenocarcinoma (TCGA LUAD) are
shown at 40X magnification, with and without nuclear segmentation. Colors
indicate identified cell types for each image.

TCGA BRCA (N=776). A) nuHIFs predictive of WGD were Mean Cancer Nuclear
Eccentricity, SD Cancer Nuclear Major Axis Length, and SD Cancer Nuclear Minor
Axis Length (AUROC=0.81). B) nuHIFs predictive of HRD were SD Cancer Nuclear
Perimeter, SD Cancer Nuclear Mean Color (“Purple-ness”), and SD Cancer Nuclear
Minor Axis Length (AUROC=0.69). C) nuHIFs predictive of HER2 status were SD
Cancer Nuclear Minor Axis Length, SD Cancer Nuclear Eccentricity, and SD Cancer
Nuclear Solidity (AUROC=0.68).
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TCGA PRAD (N=366). D) nuHIFs predictive of WGD were SD Cancer Nuclear Major
Axis Length, Mean Cancer Nuclear Grayscale Intensity, and SD Cancer Nuclear Mean
Color (AUROC=0.70). E) nuHIFs predictive of HRD were Mean Cancer Nuclear
Eccentricity, SD Cancer Nuclear Major Axis Length, and SD Cancer Nuclear Minor
Axis Length (AUROC=0.68). F) nuHIFs predictive of Gleason grade 8-10 were SD
Cancer Nuclear Grayscale Texture (SD Intensity), SD Cancer Nuclear Mean Color,
and Mean Cancer Nuclear Mean Color (AUROC=0.68; N=264).

F) Gleason Grade 8-10D) WGD E) HRD 

TCGA LUAD (N=401). G) nuHIFs
predictive of WGD were Mean
Cancer Nuclear Eccentricity, SD
Cancer Nuclear Major Axis Length,
and SD Cancer Nuclear Minor Axis
Length (AUROC=0.71). H) nuHIFs
predictive of HRD were SD Cancer
Nuclear Perimeter, SD Cancer
Nuclear Mean Color, and SD
Cancer Nuclear Minor Axis Length
(AUROC=0.68).
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