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Figure 1. Example 
representations of TIMAP 
A) tissue models and B) 
cell models in NSCLC.  For 
each model rendering, a 
labeled heatmap appears 
to the right of the 
corresponding H&E image. 

• The composition of the tumor immune microenvironment (TME) is complex and challenging to quantify manually. 

• Machine learning (ML) algorithms can be used to characterize the spatial distribution of cells and tissue regions of the TME from digitized H&E-
stained whole slide images (WSI) of multiple cancer types.

• Based on ML-based TME characterization, we extracted TME-associated human interpretable features (HIFs) to generate an atlas characterizing 
the TME in several cancer types, including bladder cancer, breast cancer, and non-small cell lung cancer (NSCLC).  We term this atlas Tumor 
Immune Microenvironment Atlas Project (TIMAP).

Figure 3. Prediction of cancer type by all TIMAP HIFs. A) T-SNE plots of the atlas features 
showed distinct clusters for each of the three indications. B) Multinomial LASSO logistic 
regression to analyze HIFs underlying differences between cancer types reported an average 
weighted F1 score of 0.986 and AUROC of 0.999 for 5-fold cross validation.

Figure 4. Performance of TIMAP HIFs within a single cancer type.  A) T-SNE plots of the atlas 
features showed variable separation of NSCLC clinical trial cohorts. B) Multinomial LASSO 
logistic regression to analyze HIFs underlying differences between NSCLC cohorts reported an 
average weighted F1 score of 0.542 and AUROC of 0.858 for 5-fold cross validation.  

Figure 5. TIMAP HIF 
enrichment across 
cancer types. 
Unsupervised 
hierarchical clustering of 
TIMAP HIFs reveals 
distinct clusters based 
on HIF enrichment. 
Median z-scores are 
shown for each HIF. 

Figure 7. Feature reduction and prediction of cancer type by representative TIMAP HIFs. 
Representative HIFs were identified based on the analysis in Figure 3.  A) T-SNE plots of the 
atlas features showed distinct clusters for each of the three indications. B) Multinomial LASSO 
logistic regression to analyze HIFs underlying differences between cancer types reported an 
average weighted F1 score of 0.969 and AUROC of 0.995 for 5-fold cross validation. 
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Model development and deployment. One ML model for each cancer type was 
developed using ground truth annotations from pathologists to identify and 
quantify cells (cancer cells, lymphocytes, macrophages, fibroblasts, and plasma 
cells) and regions of tissue (cancer epithelium, cancer-associated stroma, and 
necrosis) within the TME. Models were deployed on H&E-stained WSI of more 
than 12,000 biopsies and resections collected prior to trial intervention, 
including NSCLC (N=5,408), breast cancer (N=3,951), and bladder cancer 
(N=2,916), from 7 NSCLC, 4 breast cancer and 2 bladder cancer clinical trials 
sponsored by Genentech/Roche, as well a commercial NSCLC dataset. 
Feature extraction. Spatially-resolved HIFs measuring area and count 
proportions and densities were extracted using model predictions. 
Visualization of cancer types in HIF space. T-SNE was performed for 
dimensionality reduction and visualization of patients via HIFs, and hierarchical 
clustering was performed to generate clusters of HIFs.
Supervised prediction of cancer type using HIFs. Multinomial LASSO logistic 
regression was performed to reduce the multicollinearity of HIFs and predict 
cancer type based on HIFs.

Figure 6. Representative examples of enriched HIFs in H&E images.  A) High density of 
macrophages in stroma in bladder cancer.  B) High density of fibroblasts relative to 
lymphocytes in stroma in breast cancer.

CONCLUSIONS 
The application of AI-based, spatially-resolved, quantitative histopathology at scale shows 
that AI-identified HIFs can stratify cancer types.  Furthermore, identified HIFs can reveal 
meaningful differences in the TME composition between cancer types.  This ML-based 
characterization of the TME can be coupled with other modalities, such as RNA-seq, to 
further investigate the biology of distinct cancer types and the driving factors underlying 
treatment response. Work is ongoing to utilize these ML-derived TME atlas features to 
identify meaningful clinical differences between patients.
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Figure 2. Study workflow.  Briefly, H&E slides from 13 clinical trials were 
digitized prior to an automated quality control process to ensure optimal tissue 
quality.  Cell types and tissue regions were predicted based on previously trained 
CNN-based models.  Based on these predictions, HIFs were extracted.  
Quantitative analysis of HIFs allowed for downstream analyses based on TME 
features in each cancer type.
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